发布日期: 2025-01-27
版本号: v1.13.0-rc.0

Meilisearch v1.13版本主要带来以下重要更新:1)正式稳定向量存储功能,不再需要手动开启实验性功能,可直接使用结合传统全文搜索与AI语义搜索的混合搜索能力,同时调整了相关错误代码命名规范;2)新增无需转储文件的升级方式,支持从v1.12版本直接通过命令行参数实现快速原地升级;3)其他优化包括改进任务自动批处理机制、增加Prometheus指标监控任务队列延迟、提升索引列表请求速度、安装脚本支持GITHUB_TOKEN认证等;4)修复了不可过滤属性的错误提示问题,并进行了多项依赖更新、测试拆分、代码重构及文档改进。该版本仍为候选版本,不建议在生产环境使用。

更新内容 (中文)

v1.13.0 版本更新日志

[!WARNING] 由于这是候选版本(RC),我们不建议在生产环境中使用。遇到非预期行为?欢迎提交错误报告新功能反馈

Meilisearch v1.13 带来了多项重大改进,包括稳定向量存储功能以实现无缝混合搜索整合!🎉 本版本还简化了 Meilisearch 的升级流程:迁移不再需要转储文件!

新功能与更新 🔥

稳定向量存储功能

自 v1.3.0 首次发布后,我们现已全面稳定向量存储功能。该实验性功能不再需要手动激活,vectorStore 字段也不再通过 \/experimental-features 路由显示或接收。这使得使用混合搜索能力更加简单——通过结合传统全文搜索与 AI 驱动的语义搜索,显著提升搜索相关性。

稳定前的破坏性变更

  • 接受的 Ollama URL 仅限以 \/api\/embed\/api\/embeddings 结尾
  • 修改的错误代码:
    • invalid_embedder 已拆分为 invalid_search_embedderinvalid_similar_embedder。当搜索(或相似请求)的 embedder 参数引用不存在的嵌入配置或非字符串时返回这些代码
    • invalid_hybrid_query 更名为 invalid_search_hybrid_query。当 hybrid 参数无效(包含未知键值或非空值/对象)时返回

由 @dureuill 在 https://github.com/meilisearch/meilisearch/pull/5232 和 https://github.com/meilisearch/meilisearch/pull/5234 完成

实验性无转储升级:无需转储文件即可升级到新版

从现在起,您可以将 v1.12 及以上版本的数据库直接升级到最新版本而无需使用转储文件。这意味着这是原地升级过程,速度更快且仅消耗最低限度的内存或磁盘资源。

将 v1.12 数据库升级到 v1.13 请运行:

.\/meilisearch --experimental-dumpless-upgrade

点击此处了解更多。

由 @irevoire 和 @dureuill 在 https://github.com/meilisearch/meilisearch/pull/5264 完成

其他改进

  • 通过暴露限制批次总大小的方法改进任务自动批处理 by @Kerollmops in https://github.com/meilisearch/meilisearch/pull/5223
  • 关联实验性功能 Prometheus:添加 Prometheus 指标测量任务队列延迟 by @takaebato in https://github.com/meilisearch/meilisearch/pull/5178
  • 加速索引列表请求 by @irevoire in https://github.com/meilisearch/meilisearch/pull/5166
  • 在安装脚本中支持 GITHUB_TOKEN 认证 by @Sherlouk in https://github.com/meilisearch/meilisearch/pull/5216

修复 🐞

  • 改进属性不可过滤时的错误提示 by @jameshiew in https://github.com/meilisearch/meilisearch/pull/5135

其他

  • 依赖项更新
    • 升级依赖项并修复 idna 严重性问题 by @Kerollmops in https://github.com/meilisearch/meilisearch/pull/5218
  • CI 与测试
    • 分离 Meilisearch crate 测试到独立文件 by @K-Kumar-01 in https://github.com/meilisearch/meilisearch/pull/5134
    • 将测试拆分到独立文件 by @K-Kumar-01 in https://github.com/meilisearch/meilisearch/pull/5171
    • 移除过时测试代码 by @K-Kumar-01 in https://github.com/meilisearch/meilisearch/pull/5173
    • 修复不稳定的批次测试 by @irevoire in https://github.com/meilisearch/meilisearch/pull/5175
    • 分离 option crate meilisearch 测试到独立文件 by @K-Kumar-01 in https://github.com/meilisearch/meilisearch/pull/5174
    • 移除硬编码任务 ID 防止测试不稳定 by @mhmoudr in https://github.com/meilisearch/meilisearch/pull/5182
  • 杂项
    • 引导用户在基准板上创建自定义报告 by @Kerollmops in https://github.com/meilisearch/meilisearch/pull/5029
    • 修复注释中的拼写错误 by @eltociear in https://github.com/meilisearch/meilisearch/pull/5184
    • 使用常量替代硬编码字符串 by @Gnosnay in https://github.com/meilisearch/meilisearch/pull/5169
    • 重构 index-scheduler by @irevoire in https://github.com/meilisearch/meilisearch/pull/5199
    • 重构索引器 by @dureuill in https://github.com/meilisearch/meilisearch/pull/5168
    • 自动生成 OpenAPI 规范 by @irevoire in https://github.com/meilisearch/meilisearch/pull/4867 & https://github.com/meilisearch/meilisearch/pull/5231
    • 使用 Extend::extend 合并位图 by @Kerollmops in https://github.com/meilisearch/meilisearch/pull/5221
    • 修复索引创建时的任务队列损坏错误 by @irevoire in https://github.com/meilisearch/meilisearch/pull/5239

❤️ 再次感谢外部贡献者:

  • Meilisearch: @dureuill, @Kerollmops, @takaebato, @irevoire, @Sherlouk, @jameshiew, @K-Kumar-01, @mhmoudr, @eltociear, @Gnosnay.

更新内容 (原始)

v1.13.0 release changelogs

[!WARNING] Since this is a release candidate (RC), we do NOT recommend using it in a production environment. Is something not working as expected? We welcome bug reports and feedback about new features.

Meilisearch v1.13 introduces several significant improvements, including stabilizing the Vector Store feature for seamless hybrid search integration! 🎉 This version also simplifies the Meilisearch upgrade process: you don’t need a dump for migrating anymore!

New features and updates 🔥

Stabilize Vector Store feature

After its initial release in v1.3.0, we have now fully stabilized the Vector Store feature. The experimental feature no longer requires manual activation, and the vectorStore field is no longer displayed or accepted by the /experimental-features route. This makes it even simpler to utilize our hybrid search capability, which delivers significantly better search relevance by combining traditional full text search with AI-powered semantic search.

Breaking Changes before Stabilization

  • Accepted Ollama URLs can only end with /api/embed and /api/embeddings.
  • Modified error codes:
    • invalid_embedder has been split into invalid_search_embedder and invalid_similar_embedder. These codes are returned when the embedder parameter of a search (resp. similar) request refers to a non-existing embedder configuration or is not a string.
    • invalid_hybrid_query has been renamed to invalid_search_hybrid_query. It is returned when the hybrid parameter is invalid: contains unknown keys or is not either null or an object.

Done by @dureuill in https://github.com/meilisearch/meilisearch/pull/5232 & https://github.com/meilisearch/meilisearch/pull/5234

Experimental Dumpless Upgrade: Ease upgrading to the next version without a dump

From now on you can upgrade any database in the v1.12 version or more to the latest version without using a dump. That means it’s an in-place, way faster upgrade process that consumes only the minimal amount of RAM or disk required.

To upgrade your v1.12 database to v1.13 runs:

./meilisearch --experimental-dumpless-upgrade

Read more about it here.

Done by @irevoire and @dureuill in https://github.com/meilisearch/meilisearch/pull/5264

Other improvements

Fixes 🐞

Misc

❤️ Thanks again to our external contributors:

  • Meilisearch: @dureuill, @Kerollmops, @takaebato, @irevoire, @Sherlouk, @jameshiew, @K-Kumar-01, @mhmoudr, @eltociear, @Gnosnay.

下载链接